Lab 1 discussion

Nicole Hamilton BEE 233 Fall 2015 Section AA The whole point of Lab 1 is to familiarize you with the instruments.

Resistors

You probably discovered resistance measurements are only good to about 3 digits.

Resistance goes up as they heat up, even with just the tiny current from the ohmmeter.

My own results measuring 5 resistors

Resistor	Measured	% Error	Abs(% Error
1	987	-1.30	1.30
2	975	-2.50	2.50
3	984	-1.60	1.60
4	982	-1.80	1.80
5	979	-2.10	2.10
Average	981	-1.86	1.86

They're supposed to be 5% resistors, so in this small sample, it looks like we got what we paid for.

Power supplies at 5 V

Probably discovered that the Tek PS is slightly more accurate.

My own results:

	Setting	Displayed	Measured
Tek PWS 4205	5.000	5.001	5.0010
RSR HY3002-3		5.0	5.0287

Current limit

As the current knob was turned CCW, it hit a point where current and voltage began dropping quickly to about 1 mA and 1 V.

Function generator and oscilloscope

- 1. Sine wave 5.0 Vpp at 20 KHz with +1.0 V DC offset with measurements of Vpp, frequency and mean.
- 2. Pulse 2.0 Vpp at 100 Hz 80% duty cycle with measurements of Vpp and frequency and cursors to measure the duty cycle.

Hopefully, everyone was able to do this.

Function generator output resistance

Function generator Set for 400 Vpp @ 100 Hz Either High Z or 50 Ω output

RL is either 51 Ω or 27 K Ω

Four combinations

- 1. 50 Ω output and 51 Ω load
- 2. 50 Ω output and 27 K Ω load
- 3. High Z output and 51 Ω load
- 4. High Z output and 27 K Ω load

50Ω output

400 mVpp 100 Hz

RL1 = 50.46 Ω, Vo1 = 432 mVpp

RL2 = 26.51 KΩ, Vo2 = 840 mVpp

High Z output

400 mVpp 100 Hz

RL1 = 50.46 Ω, Vo1 = 227 mVpp

Finding Ri

This is a bit of trick question because you don't actually have enough data.

Finding Ri

Let's assume the function generator does indeed have something close to the claimed 50Ω output resistance.

With RL = 27 K Ω

$$Vo = \frac{27e3}{50 + 27e3} * VS = .9982 * VS$$

So let's approximate VS \cong Vo2.

Assuming VS \cong Vo2

$$Ri = \frac{RL1*(Vo2-Vo1)}{Vo1}$$

$$Ri = \frac{RL1*(Vo2-Vo1)}{Vo1}$$

My own results

RL1 = 50.46 Ω

For 50 Ω output

Vo1 = 432 mVpp Vo2 = 840 mVpp Estimated Ri = 47.7 Ω

For High Z output

Vo1 = 227 mVpp Vo2 = 431 mVpp Estimated Ri = 45.3Ω